A DSP ENGINE FOR A 64-ELEMENT ARRAY

S. W. ELLINGSON

The Ohio State University ElectroScience Laboratory
1320 Kinnear Road, Columbus, OH 43212 USA
E-mail: ellingson.1@osu.edu

This paper considers the feasibility of software-defined signal processing for a 64-element
antenna array. In the proposed architecture, the signal from each element of the array is
individually converted to a digital complex baseband format. These 64 outputs are then
distributed among many DSP microprocessors, which take turns acquiring and processing
the data. The processing is done entirely in software; no FPGAs or ASICs are used. The
advantage of software implementation is the ability to dynamically and flexibly allocate the
available computing resources to various tasks. Also, the architecture is flat as opposed to
hierarchical; every DSP receives data from all antennas. A limited test of this approach
using C language source code and commercial off-the-shelf hardware was conducted using
the ADSP-21060 “SHARC” DSP. The following processing algorithm was considered as a
test of the architecture: In-line calibration, 2D-FFT to form 64 beams, and then 64 length-
256 1D-FFTs to obtain the frequency spectrum for each beam. The resulting performance
equation is Fs - (duty cycle) < ¢;J, where Fs is the sample rate, ¢; = 2.34 x 10* samples/s,
and J is the number of modular computing “clusters” used in the design. This study suggests
that ¢; can be improved by one or two orders of magnitude using the existing hardware.

1 Introduction

This paper considers the feasibility of software-defined signal processing for large antenna
arrays. This technical strategy has only recently become feasible, mainly due to recent
technological advances in wideband digital receivers and DSPs. It is expensive compared to
more traditional approaches. Nevertheless, it is useful when the ability to define system
operation in software, and the ability for “on-the-fly” reconfiguration, are most important. An
example of such an application is space-frequency surveillance. In this application the array is
used to observe continuously over a large (potentially hemispherical) field-of-view, and is
tasked to determine the joint distribution of incident signal power in the space domain (i.e.,
angle of arrival) and frequency domain. Applications for such a system can be found in radio
astronomy, the search for extraterrestrial intelligence (SETI), parasitic bistatic radar. In SETI,
for example, it is desired to detect very weak, intermittent narrowband signals with no a priori
knowledge of frequency or direction of arrival. In this paper, it is assumed that the system
includes an array of P sensors, organized into a rectangular M x N grid. A design for

M = N =8 and P = 64 is considered specifically. The signal received by each sensor is
processed by a dedicated receiver, which outputs digital samples in complex baseband (“zero
IF”) form. The following sequence of operations is then as follows:

o Acquisition. L snapshots are captured from the array. Each snapshot consists of P
samples, one from each sensor. In this paper, we will consider specifically the case where
L = 256 which (as explained below) is based on memory constraints.

e (lalibration. In practice, the acquired snapshot data will be distorted by various factors
including mutual coupling and unequal electronic delays. This distortion can be reduced
by multiplying the P x 1 vector of samples from a snapshot by a P x P calibration
matrix. In the absence of mutual coupling, the calibration matrix reduces to a diagonal
matrix, so that this step can be performed more efficiently as a length P inner (“dot”)
product. In practice, it is anticipated that there will be strong coupling between adjacent
elements but that more distant elements will be only weakly coupled. In this case, the

calibration matrix has a band-diagonal structure, and the required processing effort falls
somewhere between that required for an inner product and that required for a full matrix
multiply.

e Spatial Processing. A two-dimensional (2D) Fast Fourier Transform (FFT) of size M x N
is applied to each snapshot. The P bins now represent beams pointing in various
directions.

e Temporal Processing. A length L one-dimensional (1D) FFT is applied to all the samples
associated with one beam. This is repeated P times — once for each beam.

e Storage. The resulting set of P frequency spectra are stored in preparation for the next
iteration of processing. The data in storage is expected to be passed along for further
processing, analysis, and decision making.

There is one additional issue — interference suppression — which is relevant but not addressed
in this paper. However, assuming an interference suppression algorithm is implemented on an
external processor, any spatial processing required can be implemented as a modification to
the calibration matrix.

The motivation for a software-defined architecture in this application is as follows: It is a
characteristic of most surveillance systems that they spend most of their time doing routine
and tedious processing; in effect, waiting for something interesting to happen. An “interesting”
event in this case is the emergence of a signal with unexpected direction or frequency. When
this occurs, it may be desirable to allocate a larger portion of the available computing
resources to study the new signal. For example, it may be desirable to abandon surveillance of
some portion of the space-frequency domain and invest the additional resources in more
computationally-intensive operations that would not normally be required: for example,
calculating improved direction of arrival estimates, attempting to demodulate the signal,
implementing more aggressive interference suppression algorithms, and running self-calibration
routines and diagnostics to ensure the signal is not the result of interference or a malfunction.
In a software-defined architecture, this rearrangement of priorities can be done in an elegant,
flexible, and dynamic manner. This is as opposed to traditional “stovepipe” architectures, in
which such a change in operation would require additional suites of equipment and/or
downtime to reconfigure the equipment.

The following additional issues are considered in this paper.

e Bandwidth/Duty Cycle Tradeoff. The achievable bandwidth will be constrained by both
the available computing resources (i.e., floating-point operations per second, or FLOP/s)
as well as the available input/output (I/O) bandwidth. In this paper, it is shown that
for continuous operation (100% duty cycle), a sample rate up to 10 million samples per
second (MSPS) is feasible, albeit at very high cost. However, this system can be
implemented for a dramatically reduced cost by trading off duty cycle and/or bandwidth.
For example, 24.3 thousand samples per second (kSPS) can be achieved continuously in
real time for cost on the order of US$70K. The proposed architecture allows the tradeoff
between bandwidth and duty cycle to be implemented dynamically.

o (' language source code. Usually, programming in a high-level language such as C results
in reduced processing throughput, relative to coding in a processor’s native assembly
language. Nevertheless, system development in C is generally much faster and more
flexible than development in assembly language. For the example presented in this
paper, the code appears to run at about 40% of the realizable processing throughput.
However, much of this degradation appears to be attributable to specific sections of the
code as opposed to being uniformly distributed across all sections of the code.

e Scalability. The high cost of a software-defined architecture may preclude an immediate
full implementation of the system. However, the architecture proposed here is scalable,

in the sense that one may achieve a more favorable bandwidth/duty cycle tradeoff simply
by adding more identical, modular processing subsystems. In this paper, the subsystems
are called clusters.

e Single Platform. Typically, combinations of field programmable gate arrays (FPGAs)
and DSPs result in a more efficient system design than DSPs alone. However,
multi-platform system development presents additional challenges in terms of integration
and the need to master multiple sets of development tools. In this initial study, the
simple case of single-platform (DSP-only) implementation is considered.

e Non-Hierarchical (“Flat”) Architecture. Signal processing for large arrays can be greatly
simplified using hierarchical processing. This means that array signal processing is done
in multiple stages. For example, the first stage might be small groups of P; elements.
This stage has fewer (P/P;) outputs than inputs. Thus, the second stage is
computationally less demanding. The drawback of this approach is that information is
lost at each stage in the processing. For example, it is not possible to preserve the
complete, original field-of-view using this approach. By contrast, a flat architecture
allows all computing resources to be applied to any part, or all, of the sensor outputs.
Although this paper considers only the flat architecture, such a system could easily be
combined with other system elements to form a hierarchical architecture, or to act as a
flat “overlay” to an existing hierarchical system.

2 Development of the Architecture

Based on the following considerations, the ADSP-21060 Super Harvard Architecture Computer
(SHARQC), a product of Analog Devices, Inc. (ADI), was selected for this study. First, this
DSP has a large I/O bandwidth: It can transfer up to 240 megabytes-per-second (MB/s)
across its native microprocessor bus, has six 4-bit (nibble)-wide serial link ports (“SLINKSs”)
which each can transfer up to 40 MB/s each, and has 10 direct memory access (DMA)
channels so that many of these resources can be used concurrently “in the background”; i.e.,
with no impact on core processing. Second, the ADSP-21060 has 4 megabits of static random
access memory (SRAM) on chip. This allows data to be brought on-chip in large blocks, where
it can be more efficiently accessed for signal processing. This in turn reduces contention for the
microprocessor bus. Third, this device is a floating point processor, which is highly desirable
for this application due to numerical dynamic range considerations. Finally, the ADSP-21060s
used in this design are clocked at 40 MHz and are claimed by ADI to be capable of up to 80
million FLOP/s (MFLOP/s), sustained. In practice, such ratings are of little value since actual
performance is highly dependent on coding details and I/O considerations. Nevertheless, this
DSP is generally considered to be among the fastest in its class. It should be noted that ADI
and Texas Instruments have recently released the next generation of these parts, which have
superior performance. The newer parts were not considered for this study because they are
still relatively expensive, and development tools for these parts are not as mature.

In space-frequency surveillance, each sensor outputs a digital complex baseband signal at Fg
samples per second. It is assumed that each sample consists of a 16-bit in-phase “I” word plus
a 16-bit quadrature “Q” word, for a total of 4 bytes per sample, which is a common output
format among digital receivers. The set of P samples for a given instant is called a “snapshot”,
which consists of 4P bytes. Thus, the aggregate output data rate of the array is 4PFg bytes
per second.

The highest-bandwidth route into the SHARC is through it’s local bus, which runs at

240 MB/s. If a single bus is used, Fs must be less than 1 MSPS for P = 64. Another factor is
that the sensor data must be time-division multiplexed onto the bus. The bus will thus have
more than P physical access points, which is difficult to implement due to mechanical and
electromagnetic considerations. The next-highest bandwidth routes into the SHARC are the
SLINKSs, which run at 40 MB/s each. Each SHARC has 6 SLINK ports. For various reasons,

such as the availability of DMA channels and physical layout considerations, it is difficult to
use more than 2 SLINKSs at a time. Let us define a cluster as a group of K SHARCs working
together to acquire the output of an array. Using SLINKS, a P = 64 array could be serviced by
a cluster of K = 32 SHARCs, with Fs up to 10 MSPS. Each SLINK consists of a 14-pin ribbon
cable, and thus is electrically and mechanically simple to implement. Also, the conversion from
32-bit sample words to a sequence of 8 4-bit nibbles suitable for transmission on a SLINK is
relatively simple compared to a bus interface. Although the SLINK approach appears
promising, two problems emerge. First, note that each SHARC would receive only 2 sensors’
worth of data; thus, a follow-up procedure is required to allow each SHARC to have access to
all the sensor data necessary for a complete block of L snapshots. The second problem is that
at the maximum transmission rate of Fg = 10 MSPS, each SHARC would be able to do little
more than simply absorb samples until internal memory was filled. There would be no time
remaining to perform signal processing. Solutions to these problems are suggested below.

The requirement that each SHARC have access to all the sensor data for a given block of L
snapshots implies a high-bandwidth connection between a given SHARC and every other
SHARC in the cluster. For a group of 6 or less SHARCs, the solution is simple: this many
SHARCs can share the 240 MB/s SHARC bus. Moreover, the internal memory of each
SHARC on the bus lies within the address space of every other SHARC on the bus. This
special section of address space is known as the “multiprocessor memory space”, and makes
each SHARC’s internal memory appear to be a virtual extension of every other SHARC’s
internal memory. To extend the number of SHARCs per cluster beyond 6, consider that six
SHARCs can easily be hosted on a single board on the ubiquitous PCI bus. PCI has a nominal
throughput of 132 MB/s, which equates to about 80-100 MB/s in practice, and a capacity of
four boards without bridges. With bridges, the capacity can be extended to six or more
boards. Thus, a K = 32 cluster could be implemented on a single backplane. Let us assume

L = 256. This gives 4PL = 64 KB (kilobytes), which is a practical goal for storage in the
ADSP-21060’s internal memory. Thus, a cluster should acquire KL = 8192 snapshots at a
time, which provides enough data for every SHARC in the cluster to have a block of L
snapshots to process. The required time to redistribute a single block of 8192 snapshots may
be as much as 25 ms over the PCI bus. This may or may not be acceptable depending on how
much time is required for signal processing tasks.

The second problem with the SLINK data acquisition approach described above is that at the
maximum transmission rate of Fis = 10 MSPS each SHARC would have insufficient time for
signal processing. The cluster capture size of KL = 8192 array snapshots determined above
requires about 819 us at 10 MSPS. Since it is desired to perform real-time signal processing
operations on this data, the DSP cluster must operate with a reduced duty cycle. That is, the
cluster must be allowed to ignore input samples for a fraction of the time, so that it has time
to process previously-acquired snapshots. To maintain real-time operation, additional clusters
are required to ensure that that some cluster is always available to receive snapshots.

To achieve this, a “rotating acquisition” technique can be used. In this approach, the snapshot
data is replicated and the full bandwidth is sent to J identical clusters. However, each cluster
is responsible for collecting snapshots only 100/J % of the time. Each cluster uses the time
between collection periods to process the data received during the last collection. Assuming
the number of SHARCs per cluster is K = 32, the required number of clusters J depends on
the time required for signal processing. This issue is considered in the next section.

3 Validation Test

It was shown in the previous section that various aspects of the architecture depend on the
execution time for signal processing. This section describes a test for this purpose, using actual
SHARC hardware and software. This test also serves as validation of the SHARC’s ability to
perform the various functions required of it in this architecture.

Task ID | Description Cycles Effort
0 | SLINK transfer 32384 0.24%
1 | Collect snapshots from other SHARCs in cluster 130461 0.97%
2 | Conversion to I-Q floating point values 591360 4.39%
3 | Full calibration (spatial filtering), 256 times 9146880 | 67.95%
4 | 2D (spatial) FFT, 8 x 8, 256 times 2003976 | 14.89%
5 | Transfer intermediate result to external SRAM 218112 1.62%
6 | Temporal window, length 256, 64 times 131456 0.98%
7 | 1D (temporal) FFT, length 256, 64 times 931072 6.92%
8 | Transfer final result to External SRAM 262400 1.95%

Total for tasks 0 through 8 13448101 | 99.90%
Ultimate total, including test overhead 13461556 | 100.00%

Figure 1: Execution time for full calibration. Actual elapsed time was 336.5 ms.

This test was performed using a “Snaggletooth-PCI” board, a product of Bittware Research
Systems, Inc. This board fits in a PCI slot in a PC and contains two SHARCs. SLINK
connectors are available for both DSP-A and -B. Two additional SHARCs can be mounted on
the board, each having two additional SLINKS. Thus, up to 8 external SLINKs could be
supported with 2 SLINKs to each of four SHARCs. In this test, however, only the two
on-board SHARCs were used. DSP-B served as the “device under test”, and was set up to be
as similar as possible to a DSP within the proposed architecture. Specifically, DSP-B was
configured to play the role of “DSP-0" within the proposed architecture, with responsibility for
sensors 0 and 1. DSP-A served several functions:

e First, it was used to generate a complete block of KL array snapshots. The scenario
assumed a single unmodulated carrier signal with baseband offset frequency = +1 MHz
incident from (0, ¢) = (30°,225°), with the array is oriented in the z — y plane and the z
axis corresponding to 8 = 0. No attempt was made to include noise. The sample rate
was 10 MSPS.

e Each I-QQ sample was converted to a 32-bit sample word, consisting of a 16-bit I word
plus a 16-bit Q word.

e Emulating the digital receivers associated with sensors 0 and 1, DSP-A sent output
across the two SLINKs to DSP-B. The SLINKs were implemented using two ribbon
cables connecting the appropriate connectors on the board.

e Emulating DSP-1 (responsible for sensors 2 and 3), DSP-A positioned the data that
would normally be received by this DSP in its internal memory, so DSP-0 could access it
via the multiprocessor memory space; i.e., via the SHARC bus.

o After execution was complete, DSP-A was used to recover the processed data from
external SRAM, where it is deposited by DSP-B. The data is searched to locate the
space-frequency bin containing the greatest power. This result is compared to the correct
result to verify proper operation: that is, the signal should appear in the correct beam
and frequency bin.

The fundamental unit of time for a digital microprocessor is a clock cycle. Since the SHARCs
in this test run at 40 MHz, one cycle corresponds to 25 ns. The source code for DSP-B
included many timers which were used to determine how many cycles were required to perform
various tasks. The results are given in Figure 1.

The execution time for a single SHARC to process a single block of L snapshots was about
1.35 x 105 cycles; i.e., 336.5 ms. At this speed, the SHARC can process about 761 snapshots

Task ID | Description Cycles Effort
0 | SLINK transfer 32384 0.70%
1 | Collect snapshots from other SHARCs in cluster | 130461 2.82%
2 | Conversion to I-Q floating point values 591360 | 12.79%
3 | Partial calibration (spatial filtering), 256 times 308736 6.68%
4 | 2D (spatial) FFT, 8 x 8, 256 times 2003976 | 43.34%
5 | Transfer intermediate result to external SRAM 218112 4.72%
6 | Temporal window, length 256, 64 times 131456 2.84%
7 | 1D (temporal) FFT, length 256, 64 times 931072 | 20.14%
8 | Transfer final result to External SRAM 262400 5.67%

Total for tasks 0 through 8 4609957 | 99.70%
Ultimate total, including test overhead 4623412 | 100.00%

Figure 2: Execution time for partial calibration. Actual elapsed time was 115.6 ms.

per second on average, and a K = 32 cluster can process about 2.43 x 10* snapshots per
second on average. If all snapshots are to be processed continuously at the 10 MSPS rate,
J = 411 clusters are required using rotating acquisition.

Another important result from this test is the amount of effort required for full calibration:
nearly 68%. This provides strong motivation to consider the reduced-complexity calibration
proposed above. Results for the minimum-complexity (diagonal-only) calibration are shown in
Figure 2. Note that calibration time improves by a factor of 30, and overall algorithm time
improves by a factor of about 3.

Another interesting result from this test is the relatively small fraction of effort required for
data transfer (sum of tasks 0, 1, 5 and 8). In the full-calibration scenarios, this is about 5% of
the total effort, and rises to only 14% in the partial-calibration scenario. Therefore, this
architecture is only lightly burdened by the additional chore of redistributing samples among
the various SHARCs on a SHARC bus.

Finally, let us compare these results to theoretical results and to the rated performance of the
SHARC. If we restrict our attention to the “core” signal processing tasks (tasks 3, 4, 6, and 7),
it is simple to derive the theoretical computing effort required. Let us define a real addition or
multiplication as 1 floating-point operation, or FLOP. Complex addition is then 2 FLOPs, and
complex multiplication is 6 FLOPs. The nominal FLOP ratings for the various tasks can then
be calculated as indicated below:

e (alibration. A single partial calibration, being an length-P complex inner product, is
8P — 2 FLOPs. A single full calibration can be viewed as P complex inner products, and
therefore requires P(8P — 2) FLOPs.

o Windowing. Application of a real-valued window of length L requires 2L FLOPs.

e ID-FFT. An FFT of length L requires L logy L multiplies; therefore a complex FFT of
length L requires about 6L logy, L FLOPs.

e 2D-FFT. A 2D-FFT of size M x N can be decomposed into M FFTs of length N
followed by N FFTs of length M. Therefore a complex 2D-FFT of size M x N requires
6M N logy MN FLOPs.

Figures 3 and 4 compare nominal FLOPs to observed computational effort. The analysis seems
to have provided only a crude estimate of the actual distribution of computational effort
among tasks. If we compare the nominal FLOP requirements to the observed execution times
for various tasks, we find that computational throughput of the SHARC is about 32 MFLOP /s
and 18 MFLOP/s for full and partial calibration respectively. Compared to the rated
throughput of 80 MFLOP/s, it appears that the coding is not optimal. Furthermore, the

Task ID | Description FLOPs Effort | Observed Effort
3 | Full calibration (spatial filtering), 256 times | 8355840 | 85.57% 74.88%

4 | 2D (spatial) FFT, 8 x 8, 256 times 589824 6.04% 16.41%

6 | Temporal window, length 256, 64 times 32768 0.33% 1.08%

7 | 1D (temporal) FFT, length 256, 64 times 786432 8.05% 7.62%

Total for tasks 3, 4, 6, and 7 9764864 | 100.00% 100.00%

Figure 3: Comparison of nominal FLOPs and observed computational effort — Full calibration

case.
Task ID | Description FLOPs Effort | Observed Effort
3 | Partial calibration (spatial filtering), 256 times | 130560 8.48% 9.15%

4 | 2D (spatial) FFT, 8 x 8, 256 times 589824 | 38.31% 59.37%

6 | Temporal window, length 256, 64 times 32768 2.13% 3.89%

7 | 1D (temporal) FFT, length 256, 64 times 786432 | 51.08% 27.59%

Total for tasks 3, 4, 6, and 7 1539584 | 100.00% 100.00%

Figure 4: Comparison of nominal FLOPs and observed computational effort — Partial calibration
case.

above data points to Task 4 (the 2D-FFT) specifically as being a problem. Further
investigation revealed that this was attributable to inefficient source coding. Other
inefficiencies are attributable to a combination of poor coding and shortcomings in the SHARC
C compiler and runtime libraries. Custom-coding certain operations in native assembly code,
though tedious, is often required to approach the rated performance for any DSP.

4 Managing Bandwidth and Duty Cycle Using Decimation

Based on the study so far, it is clear that continuous operation at 10 MSPS will result in a
very large and expensive system. However, there may be cases where continuous operation is
more important than bandwidth. For example, once an interesting narrowband (single bin)
signal is identified, it may be acceptable to reduce bandwidth and then reinvest the additional
computational throughput to sustain continuous observation within that bandwidth; i.e., at a
reduced sample rate. This can be managed using decimation, in which one or more digital
filters selectively weight or discard samples to achieve an output signal with the desired
(reduced) sample rate and appropriate bandwidth limiting. Large reductions in bandwidth
require very narrow filters, which become computationally intensive. Fortunately, there are a
number of techniques (outside the scope of this paper) which make it possible to achieve a
sample rate reduction R on the order of 10° or higher on a single integrated circuit. A
candidate part for this application is the HSP43220, a product of Harris Semiconductor. It
accepts a 16-bit digital input at up to 33 MSPS, and can apply decimation factors R < 16384.
The decimation factor (in fact, the filter coefficients themselves) are programmable. Therefore,
two of these parts (one for “I” and one for “Q”) applied to the output of each of the P digital
receivers, could be used to implement a dynamically-variable decimator. For even greater
flexibility, note that 2P decimation filters could be used for each of the J clusters (i.e., total
2J P filters) as opposed to a single set of 2P decimation filters at the digital receiver output.
This would be more expensive, but would allow the decimation factor to be varied on a
cluster-by-cluster basis. For example, it would be possible to have J/2 clusters operating at
10 MSPS and the remaining clusters dedicated to narrowband surveillance around specified
frequencies.

5 Concluding Remarks

To provide software-defined signal processing capability for a 64-element array, a K = 32
cluster design is proposed. It is hosted on a PCI backplane with at least 8 slots. Each slot
holds a commercially-available DSP board, each with 4 SHARCs. Sensor data redistribution is
via the PCI bus as proposed above. This is viable since the redistribution time of 25 ms is
small compared to the signal processing time of 336.5 ms or 115 ms for full and partial
calibration respectively. Using decimation, this design allows dynamic trade-off between duty
cycle and bandwidth, ranging from 10 MHz bandwidth at 0.24% duty cycle to about 20 kHz
for continuous processing. The cost of this system is directly proportional to the product of
the bandwidth and the duty cycle, since these two things determine the number of clusters
required for the system. In terms of performance, this architecture allows a flexible tradeoff
between these parameters, within the constraint that

Fg - (duty cycle) < (2.34 x 10* samples/s) - J. (1)

J can be increased simply (although not necessarily cheaply) by adding more clusters. In this
sense, the system can be scaled up without limit.

Acknowledgements

This work was supported by a grant from the SETI Institute, Mountain View, CA USA.

